
Towards effective Water Sensitive Urban Design assets on private land: lessons from a case study review

Belinda Hatt, Darren Bos & Stephanie Lavau

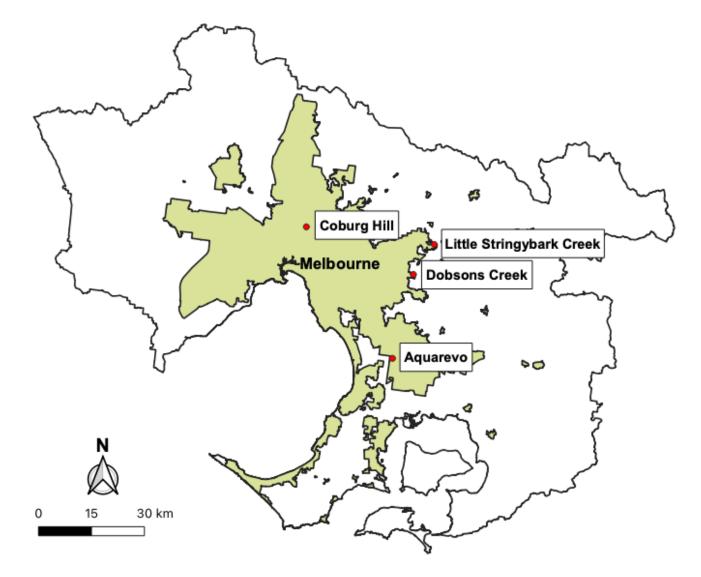
18 July 2024

Why operate WSUD assets on private land?

- Makes up a large proportion of urban areas, e.g.
 - $\sim 1/2$ of directly connected impervious surfaces in Mt Evelyn is on private land
 - ~ 1/3 annual runoff volume generated by private roofs in Merri-bek
 City Council
- Space constraints on public land
- More feasible to achieve stormwater flow targets if stormwater managed at- or close-to source

Barriers to successful WSUD assets

General:

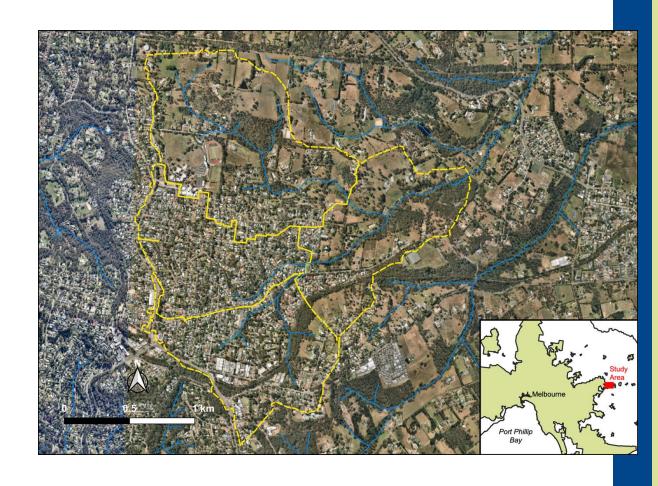

- Planning and institutional practices
- Technological capability
- Tendency to focus only up to technological installation
- Insufficient maintenance

Private land:

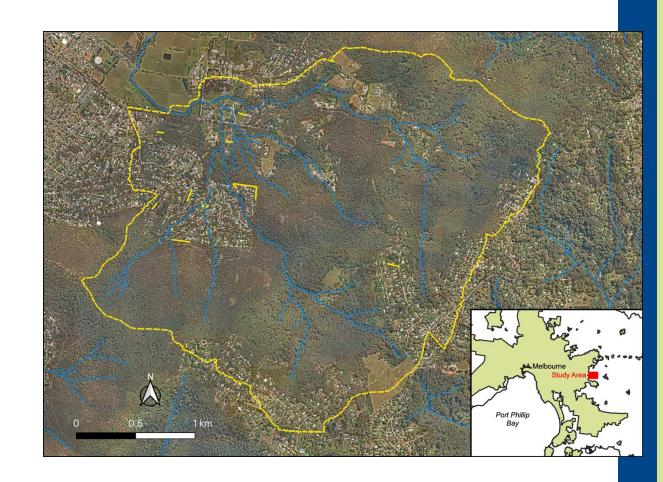
- Lack of oversight beyond the planning process
- Reliant on community participation
- Change in ownership



What factors influence the success of WSUD assets on private land?


Coburg Hill

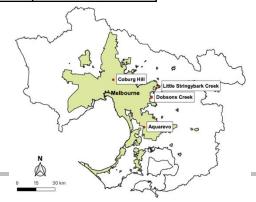
- Urban renewal project
- 21 ha residential development
- 520 dwellings
- Standard and medium density
- 2-3 kL tanks on 80% of properties
- Streetscape WSUD assets
- Tank audit conducted partway through construction


Little Stringybark Creek

- Catchment-scale experiment
- Retrofit
- ~830 residential properties
- Raingardens & tanks on private land
 - Connected to toilet and laundry
- Streetscape WSUD assets
- Participation encouraged through incentives
- Monitoring of asset performance, stream health, community participation
 - Self-assessment survey of tank owners

Dobsons Creek

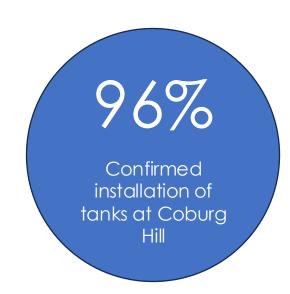
- Catchment-scale experiment
- Retrofit
- ~530 residential properties
- 1-3 x 4.5 kL tanks
 - Connected to toilet and laundry
 - Dripper hose for passive irrigation
- Streetscape works
- Participation encouraged through incentives
- Maintenance audits, monitoring of stream health and community participation


Aquarevo

- Residential redevelopment
- ~470 residential properties
- Pilot IWM and energy saving initiatives
- 2 kL tank
 - Connected to showers, baths and laundry
 - Real-time monitoring and control
- South East Water responsible for operation and maintenance

Case studies

Case study	Organisations	Timing for tank installation	Mode of installation	Maintenance responsibility	Tank operation
Coburg Hill	Satterley Property Group Spiire Merri-bek City Council	Initial construction	Compulsory	Owner	Passive
Little Stringybark Creek	University of Melbourne Melbourne Water Yarra Ranges Council Yarra Valley Water	Retrofit	Voluntary	Owner	Passive
Dobsons Creek	Melbourne Water South East Water Knox City Council	Retrofit	Voluntary	Owner	Passive
Aquarevo	South East Water Villawood Properties	Initial construction	Compulsory	Third party	Active



Lesson 1: Local government planning schemes are effective for enacting stormwater management on private land

Planning schemes were used in two different ways:

- Coburg Hill requiring tank installation as part of initial development
- LSC managing ongoing development >10 m² (e.g. road sealing, house extensions)

- Potential to influence maintenance?
- Supporting instruments
- Oversight beyond the planning stage

Lesson 2: Keep the community engagement and participation process simple

- Community engagement essential for raising awareness and encouraging participation, especially in retrofit situations
- Cost and time are key barriers to participation

- Know your audience
- Use of a range of clear, integrated communications
- Face-to-face most effective method
- Co-funding might save \$ in theory...
 ... but at what cost to participation?

Image credit: Prosser et al, 2012

Lesson 3: Trust is important for gaining and maintaining interest

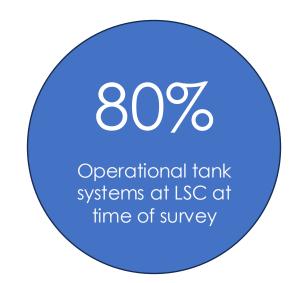
Initial distrust can be a key barrier
 e.g. unsolicited mail, unfamiliar agencies/organisations,
 offers that are "too good to be true"

- Use professional, official communications
- Address perceptions of risk upfront
- Have a trusted "face of the project"
- Harness community advocacy

Image credit: Waterway Ecosystem Research Group

Lesson 4: There is efficiency in having a consistent design

- Standard design = time and cost savings
 - Information on operation and maintenance
 - Inspection and maintenance

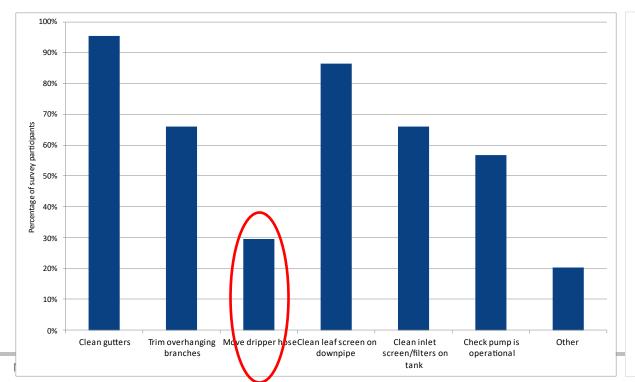

- Lack of choice might be a barrier to participation
- Some flexibility to accommodate
 - Site constraints e.g. space, slope, access
 - Individual preferences e.g. aesthetics

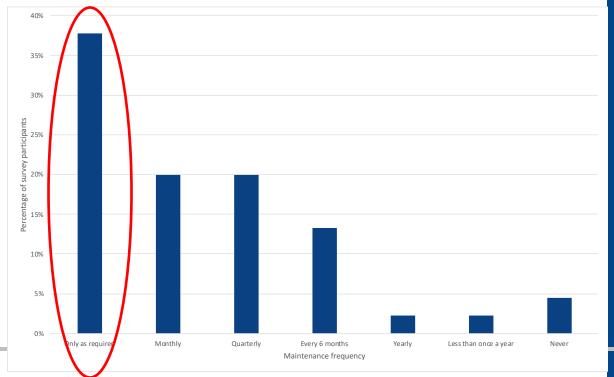
Lesson 5: Relying on residents to look after systems is risky

- Real-time monitoring and control ≈ always fully operational
- At LSC, a third of tanks had malfunctioned at some point
- Low uptake of free inspection and maintenance services

Considerations:

- Resident attitudes to public good assets on private land
- Fee for service approach?
- Willingness to pay?


Pump malfunction


Most common cause of failure

Adapted from Comley, 2019

Lesson 6: Good intentions do not always translate into owner action

- Residents generally had good intentions to keep their tank systems functional
- Types and frequency of maintenance activities broadly appropriate

Lesson 6: Good intentions do not always translate into owner action

- Residents generally had good intentions to keep their tank systems functional
- Frequency and types of maintenance activities broadly appropriate

Considerations:

- Competing demands for time and money → repair lag
- Design a network with built-in redundancies

93%

Proportion of LSC residents who said it was important their tank was

operational

Days to seek a repair to tank system

Lesson 7: Build maintenance literacy

 Residents need to know how to look after their tank system, including frequency and cost of maintenance tasks

- Common issues to arise
- Typical indicators of failure
- When and where to seek professional advice

Lesson 8: Higher capital costs likely support more effective function

- Quality components → reliable operation and fewer inconveniences
- Savings in terms of repair & replacement
- Greater resident satisfaction

Lesson 9: Make accommodations for the long-term engagement of asset owners

- Systems need to operate in perpetuity for waterway health
- Think beyond installation

- Central repository of operation and maintenance information
- Updates on system performance and waterway health outcomes
- What happens when property ownership changes?

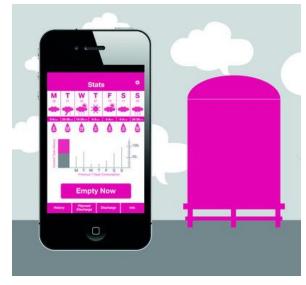


Image credit: iota

Summary

- Community participation in urban water management increases complexity
- Voluntary participants tend to be motivated by environmental outcomes rather than financial benefits
- Cost, time and trust are key barriers
- Community advocacy can be powerful
- Residents need support to help them look after their WSUD assets
- Effective long-term operation relies on long-term engagement

Looking ahead: Monbulk Creek Smart Water Network

- 1. Does real-time control translate to better system performance?
- 2. Does having a strong local connection to place or an iconic species increase community participation?
- 3. How can technology support greater resident engagement?

Image credit: Waterway Ecosystem Research Group

Energy, Environment and Climate Action

Thank you!

Merri-bek City Council: Kathryn Skidmore & Vaughn Grey

Spiire: Alexandra Brown

Melbourne Water: Michael Godfrey

South East Water: Steve Muir & David Jones

J Comley Consulting: Jamie Comley

belinda.hatt@melbournewater.com.au

Melbourne Waterway Research-Practice Partnership