

	Today's activities
TIME	SESSION
9:30 – 10 am	Welcome and introductions
10:00 – 10:20 am	Why is stormwater management important? Policy context
10:20 – 11:30 am	Introduction to planning requirements - what, why, how
MINI BREAK (15 mins)	
11:45 am – 12:45 pm	WSUD assets and achieving best practice standards
LUNCH (45 mins)	
1:30 – 2:00pm	Tools and resources
2:00 – 2:30 pm	Worked example and discussion - residential
2:30 – 3:00 pm	Break out room activities (planning & STORM)
MINI BREAK (10 mins)	
3:10 – 3:30 pm	Sediment erosion control and maintaining assets Future direction of stormwater management
3:30 – 3:50 pm	Worked examples and discussion - 53.18 (building and works)
3:50 – 4:00 pm	Wrap up

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header>

38

Checking compliance Model Urban Stormwater Improvement cor tion (MUSIC) **6** 0 53 Resklus. 2.61 38.1 0.397 3.85 14.1 3.11 271 0.723 7.2 15.9 85.9 45.1 45.1 Check these numbers to confirm Best Practice requirements have been met. Total Suspended Solids (TSS) >= 80% - Total Phosphorous (TP) >= 45% reduction - Total Phosphorous (TP) >= 45% reduction - Total Nitrogen (TN) >= 45% reduction - Gross Pollutants (GP) >= 70% reduction

					(Checkir	ng co	omplian	ce
Stormwater 1	reatmen	t Objective	- Relative	Measu	re (STC	ORM) too	ы		
Melbourne Water	STOR	M Rating F	Report						
TransactionID: Municipality: Raintall Station: Address:	1470299 DAREBIN DAREBIN 100 Bones road,	Darebin							
Assessor: Development Type:	VIC Commercial/Reta								
STORM Rating %:	120								
Description	Impervious Area (m2)	Treatment Type	Treatment Area/Volume (m2 or L)	Occupants / Number Of Bedrooms	Treatment %	Tank Water Supply Reliability (%)			
Roof_1_to_raingarden	2,112.00	Raingarden 100mm	45.00	0	128.70	0.00			
Roof_1_to_tank	1,268.00	Rainwater Tank	15,000.00	30	95.60	85.00			
Walkwaya, carpark	966.00	Raingarden 100mm	80.00	0	133.35	0.00			
			OFFICIAL					E2DESIGNLAB	44

		Suggested com	ponents of a stormwater management plan or similar
Ŷ	Item 1:	Drainage and WSUD Summary Report	What is the best strategy to manage drainage and improve stormwater quality for the site? Are the best practice standards achieved?
	Item 2:	Site Layout Plan	Are the drainage and WSUD layout shown on planning drawings?
	Item 3:	Design and engineering calculations	Are the site drainage and flood requirements met? What are the engineering and landscape details of proposed WSUD treatment system?
	Item 4:	Site Management Plan	How will construction be managed so that stormwater is protected?
	Item 5:	Maintenance Program	How will your WSUD treatment be maintained over time? What are the costs?
			OFFICIAL 60

<section-header><text><text><text>

Suggested components of a stormwater management plan or similar What is the best strategy to manage drainage and improve stor quality for the site? Are the best practice standards achieved? Item 1: Drainage and WSUD Summary Report Site Layout Plan Are the drainage and WSUD layout shown on planning drawings? Item 2: Design and Engine Calculations Are the site drainage and flood requirements met? What are the engineering details of proposed WSUD treatm tem 3: ring How will construction be managed so that stormwater is pro-Item 4: Site Management Plan Item 5: Maintenance Program How will your WSUD treatment be maintained over time? What are the costs?

68

Maintaining your assets - purpose of the guidelines - audience - how to use guidelines (structure) - relationship with other documents - whol is WSUD - WSUD austes covered by the Guidelines - WSUD austic and maintenance works del why WSUD asset maintenence is insertant
 asset Mocycle
 roles and responsibilities
 relationship to other asset manage Asset managers
Asset inspectars target performance for each asset type
 inspection and audit frequency
 outlit sheets
 typical outlit forms maintenance and rectification identification maintenance and rectification prioritisation scoring budget allocations Asset managers
 Asset inspectors Asset managers
 Asset maintainers undertaking menters-works
 maintenance and rection - clossery of common term - Int of add Asset managers
Asset maintainers - MSLO asset factsheets - Asset data managamen Melbourne Water STORMUTT 2

<section-header><complex-block><complex-block>

 Flow targets – where have they come from?

 Encircent Pretection 4x 2017

 Management from the conserver from the conserve from the conserver from the conserver from t

<image>

